Polar Coordinates Calculator

Category: Calculus

Convert between Cartesian (rectangular) and Polar coordinate systems, visualize points and curves, and perform calculations with polar coordinates.

Coordinate Conversion

Additional Calculations

Display Options

What Is the Polar Coordinates Calculator?

The Polar Coordinates Calculator is an interactive tool designed to help users convert points between Cartesian (x, y) and Polar (r, θ) coordinate systems. Whether you're working on geometry problems, analyzing circular motion, or exploring mathematical graphs, this calculator simplifies the conversion process and enhances understanding through visual representation.

Cartesian to Polar Formulas:

r = √(x² + y²)

θ = tan⁻¹(y / x)


Polar to Cartesian Formulas:

x = r × cos(θ)

y = r × sin(θ)

How to Use the Calculator

  • Select the conversion type — either Cartesian to Polar or Polar to Cartesian.
  • Enter your coordinates based on the selected system.
  • Choose the angle unit (degrees or radians).
  • Click the Calculate button to see the results.
  • Optionally, select additional operations like distance, midpoint, or area of a triangle.
  • Enable the graph and step-by-step explanations to better understand each calculation.

Key Features

  • Instant coordinate conversion with visual feedback
  • Supports both degrees and radians for angle measurements
  • Displays step-by-step calculation details
  • Includes distance, midpoint, and area of triangle calculations
  • Graphical visualization of points and geometric relationships
  • Adjustable precision for numerical outputs

Why Use This Tool?

This calculator is valuable for students, educators, and professionals alike. It simplifies coordinate transformation tasks, making it easier to analyze functions, solve geometry problems, and visualize mathematical relationships. It's especially helpful when working with circular or spiral motion, navigation, and physics scenarios involving radial symmetry.

Additionally, it complements tools like the partial derivative solver for multivariable differentiation, the directional derivative tool for gradient-based calculations, and the tangent plane solver for surface analysis.

Frequently Asked Questions (FAQ)

What is the difference between Cartesian and Polar coordinates?

Cartesian coordinates represent points using x and y values, while Polar coordinates use a distance (r) and an angle (θ).

Can I use this to analyze geometry problems?

Yes, this tool helps you calculate distances, midpoints, and triangle areas using either coordinate system.

What are the angle options?

You can choose between degrees and radians when entering or displaying angles.

Does it show the steps involved?

Yes, enabling "Show conversion steps" reveals the detailed calculation process, making it great for learning and teaching.

Is this useful for multivariable calculus?

Absolutely. While this calculator focuses on coordinate conversions and visualizations, it's often used alongside tools such as the partial derivatives tool, vector field derivative solver, and Jacobian matrix calculator when working with multivariable functions.

Explore More Tools

If you're working with derivatives, check out the derivative solver, second derivative tool, or implicit differentiation calculator. For integration problems, use the integral solver or antiderivative calculator. And if you're studying motion or curvature, tools like the arc length calculator and curvature analysis are also helpful.